Question 4. An electron in a hydrogen atom undergoes a transition from an orbit with quantum number ni to another with quantum number nf. V_i and V_f are respectively the initial and final potential energies of the electron. If $V_i/V_f = 6.25$, then the smallest possible n_f .

Solution: (5)

The potential energy of an electron in Bohr's modal is given by (assuming Coulombic force)

 $U = -Kze^2 / \gamma$

Where, γ = radius

& radius for Bohr's orbital (for mono-electronic system) =0.529 n^2/z

so, $U_i / U_r = \gamma_2 / \gamma_1 = n_2^2 / n_1^2 \dots (1)$

As, given $n_2 / n_1 = 6.25$

By comparing the above equation and equation (1).

 $n_2 / n_1 = \sqrt{6.25}$

 $n_2 / n_1 = 2.5$

So, $n_2 / n_1 = 5 / 2$

It can be written as,

 $n_2 = 5 n_1 = 2$

so the final value of $n_2 = 5$.